13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?

问题描述:

13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?

【解答】这是一个关于循环小数的周期问题.基本解答方法是先算出循环节,然后再统计每个周期的数字总数和每个周期中6的个数.
13/1995=0.0065162907268170426……,循环节是065162907268170426共18位,
每个循环节数字6出现4次,(1995-1)÷18=110……14,前14位6出现3次,
所以一共有110×4+3=443个.