直线与椭圆相交

问题描述:

直线与椭圆相交
当直线y=kx+b与椭圆相交于A(x1,y1).B(x2,y2)两点 则
|AB|=_________
√(1+k²)[(x1+x2)²-4x1x2]

即y1=kx1+b
y2=kx2+b
y1-y2=k(x1-x2)
所以AB²=(x1-x2)²+(y1-y2)²
=(x1-x2)²+k²(x1-x2)²
=(1+k²)(x1-x2)²²
=(1+k²)[(x1+x2)²-4x1x2]
所以AB=√(1+k²)[(x1+x2)²-4x1x2]