x/3+y/4>=2√(xy/12),这是基本不等式怎么解,最后等于xy

问题描述:

x/3+y/4>=2√(xy/12),这是基本不等式怎么解,最后等于xy
题是这样的:已知x,y属于R*,且满足x/3+y/4=1,则xy的最大值为。这是一道基本不等式题

晕,这个不是快解完了吗?
x/3+y/4≥2√(xy/12)
当且仅当x/3=y/4时等号成立
即1≥2√(xy/12)
平方 1≥4(xy/12)
所以 xy≤3
即 xy的最大值是3