如图在等边△ABC中,D、E分别是BC、AC上的点,且AE=CD,AD与BE相交于F,CF⊥BE.求证:(1)BE=AD;(2)BF=2AF.

问题描述:

如图在等边△ABC中,D、E分别是BC、AC上的点,且AE=CD,AD与BE相交于F,CF⊥BE.求证:

(1)BE=AD;
(2)BF=2AF.

证明:(1)∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°,AB=AC,
∵在△ABE和△CAD中

AB=AC
∠BAE=∠ACD
AE=CD

∴△ABE≌△CAD(SAS),
∴BE=AD;
(2)过B作AD的垂线,垂足为K,如图,
∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∵∠ABE+∠CBE=∠BAD+∠CAD=60°,
∴∠BAD=∠CBE,
∴∠BFK=∠BAF+∠ABF=∠CBE+∠ABF=∠ABC=60°,
∵CF⊥BE,
∴∠BEC=90°,
∴∠FBK=30°,
∴FK=
1
2
BF,
∵在△ABK和△BCF中
∠BAK=∠CBF
∠AKB=∠BFC
AB=BC

∴△ABK≌△BCF(AAS),
∴AK=BF,即AF+FK=BF,
∴AF+
1
2
BF=BF,
∴BF=2AF.
答案解析:(1)根据等边三角形的性质得∠BAC=∠ACB=60°,AB=AC,再根据“SAS”可判断△ABE≌△CAD,所以BE=AD;
(2)由△ABE≌△CAD得∠ABE=∠CAD,则∠BAD=∠CBE,∠BFK=∠BAF+∠ABF=∠CBE+∠ABF=∠ABC=60°,由CF⊥BE可得∠FBK=30°,所以FK=
1
2
BF,再根据“AAS”可判断△ABK≌△BCF,则AK=BF,即AF+FK=BF,所以有BF=2AF.
考试点:全等三角形的判定与性质;等边三角形的性质.
知识点:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的性质.