如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC形内一点,且∠APB=∠APC=135°. (1)求证:△CPA∽△APB; (2)试求tan∠PCB的值.
问题描述:
如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC形内一点,且∠APB=∠APC=135°.
(1)求证:△CPA∽△APB;
(2)试求tan∠PCB的值.
答
(1)∵在△ABC中,∠ACB=90°,AC=BC,
∴∠BAC=45°,即∠PAC+∠PAB=45°,
又在△APB中,∠APB=135°,
∴∠PBA+∠PAB=45°,
∴∠PAC=∠PBA,
又∠APB=∠APC,
∴△CPA∽△APB.
(2)∵△ABC是等腰直角三角形,
∴
=CA AB
,1
2
又∵△CPA∽△APB,
∴
=CP PA
=PA PB
=CA AB
,1
2
令CP=k,则PA=
k,PB=2k,
2
又在△BCP中,∠BPC=360°-∠APC-∠APB=90°,
∴tan∠PCB=
=2.PB PC