求y=根号下(x-1)(x-2)平方|(x-3)(x-4)平方的导数,急
问题描述:
求y=根号下(x-1)(x-2)平方|(x-3)(x-4)平方的导数,急
答
当x>4时:
y=√{[(x-1)(x-2)]/[(x-3)(x-4)]}
===> y^2=[(x-1)(x-2)]/[(x-3)(x-4)]
===>ln(y^2)=ln(x-1)+ln(x-2)-ln(x-3)-ln(x-4)
===>[ln(y^2)]'=2y*y'/(y^2)=2y'/y=1/(x-1)+1/(x-2)-1/(x-3)-1/(x-4)
===>y'=[1/(x-1)+1/(x-2)-1/(x-3)-1/(x-4)]*√{[(x-1)(x-2)]/[(x-3)(x-4)]}/2
即先对两边取对数,再分别求导而得。
当x取其他不同范围时,只需将相应部分的x和1或2或3或4对调位置即可。
答
=[(x-1)^0.5/(x-3)]*[(x-2)^2/(x-4)^2]
=[(x-1)^0.5/(x-3)]'*[(x-2)^2/(x-4)^2]+[(x-1)^0.5/(x-3)]*[(x-2)^2/(x-4)^2]'
=(2-x)*(5x+1)/[(x-1)^0.5*(x-3)^2*(x-4)^2]