求导数 y=e^-{cos(1/x)}^2下面两个不知从哪里复制连题目没看清

问题描述:

求导数 y=e^-{cos(1/x)}^2
下面两个不知从哪里复制连题目没看清

y=e^-{cos(1/x)}^2
y'=e^[-cos(1/x)]^2*{[-cos(1/x)]^2}'
=e^[-cos(1/x)]^2*2sin(1/x)cos(1/x)*(1/x)'
=e^[-cos(1/x)]^2*2sin(1/x)cos(1/x)*(-1/x^2)


y '=e^[-cos(1/x)]²·{[-cos(1/x)]²} '
=e^[-cos(1/x)]²·2[-cos(1/x)]·[-cos(1/x)] '
=e^[-cos(1/x)]²·2[-cos(1/x)]·sin(1/x)·(1/x) '
=e^[-cos(1/x)]²·2[-cos(1/x)]·sin(1/x)·(-1/x²)
=e^[-cos(1/x)]²·2cos(1/x)·sin(1/x)·1/x²
=e^[-cos(1/x)]²·sin(2/x)·1/x²

-{cos(1/x)}^2 *e^-{cos(1/x)}^2 *2*cos(1/x) *(-1/x^2) 我用手机,尽力了……总之就是复合倒,一个个倒