解不等式log2[1-(1/x)]>1

问题描述:

解不等式log2[1-(1/x)]>1

log2[1-(1/x)]>log2 2
1-1/x>2
1/x 0

log2[1-(1/x)]>1
1-(1/x)>0
1/xx>1或x

2>1
所以log2(x)是增函数
log2[1-(1/x)]>1=log2(2)
1-(1/x)>2
1/x

x>1 或x注意x的不同选择,大于0或小于0