如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合,点C移到点F位置,折痕为DE. (1)求OD的长; (2)连接BE,四边形OEBD是什么特殊四边形?请运用所学知识进行说明; (3)以

问题描述:

如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合,点C移到点F位置,折痕为DE.
(1)求OD的长;
(2)连接BE,四边形OEBD是什么特殊四边形?请运用所学知识进行说明;
(3)以O点为坐标原点,OC、OA 所在的直线分别为x轴、y轴(如图2),求直线EF的函数表达式.

(1)如图1,
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴OD=DB,
设OD=x,则DB=x,AD=8-x,
在Rt△AOD中,OA=4,
∴OD2=AD2+OA2,即x2=(8-x)2+42,解得x=5,
所以OD的长为5;
(2)四边形OEBD是菱形.理由如下:
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴∠2=∠1,DB=DO,BE=EO,
而∠1=∠3,
∴∠2=∠3,
∴OD=OE,
∴OD=DB=BE=OE,
∴四边形OEBD是菱形;
(3)过F作FG⊥x轴于G,如图2,
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴OE=OD=5,EC=EF=3,OF=BC=4,∠OFE=∠B=90°,
∴E点坐标为(5,0);

1
2
OE•GF=
1
2
OF•EF,
∴GF=
3×4
5
=
12
5

在Rt△OFG中,OG=
OF2GF2
=
4 2(
12
5
)
2
=
16
5

∴F点坐标为(
16
5
,-
12
5
),
设直线EF的解析式为y=kx+b,
把E(5,0)和F(
16
5
,-
12
5
)代入得,5k+b=0,
16
5
k+b=-
12
5
,解得k=
4
3
,b=-
20
3

∴直线EF的函数表达式为y=
4
3
x-
20
3