如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合,点C移到点F位置,折痕为DE. (1)求OD的长; (2)连接BE,四边形OEBD是什么特殊四边形?请运用所学知识进行说明; (3)以
问题描述:
如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合,点C移到点F位置,折痕为DE.
(1)求OD的长;
(2)连接BE,四边形OEBD是什么特殊四边形?请运用所学知识进行说明;
(3)以O点为坐标原点,OC、OA 所在的直线分别为x轴、y轴(如图2),求直线EF的函数表达式.
答
(1)如图1,
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴OD=DB,
设OD=x,则DB=x,AD=8-x,
在Rt△AOD中,OA=4,
∴OD2=AD2+OA2,即x2=(8-x)2+42,解得x=5,
所以OD的长为5;
(2)四边形OEBD是菱形.理由如下:
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴∠2=∠1,DB=DO,BE=EO,
而∠1=∠3,
∴∠2=∠3,
∴OD=OE,
∴OD=DB=BE=OE,
∴四边形OEBD是菱形;
(3)过F作FG⊥x轴于G,如图2,
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴OE=OD=5,EC=EF=3,OF=BC=4,∠OFE=∠B=90°,
∴E点坐标为(5,0);
∵
OE•GF=1 2
OF•EF,1 2
∴GF=
=3×4 5
,12 5
在Rt△OFG中,OG=
=
OF2−GF2
=
4 2−(
)2
12 5
,16 5
∴F点坐标为(
,-16 5
),12 5
设直线EF的解析式为y=kx+b,
把E(5,0)和F(
,-16 5
)代入得,5k+b=0,12 5
k+b=-16 5
,解得k=12 5
,b=-4 3
,20 3
∴直线EF的函数表达式为y=
x-4 3
.20 3