一道分式方程.X-2分之X-1减X-3分之X-2=X-5分之X-4减X-6分之X-5.要具体.

问题描述:

一道分式方程.X-2分之X-1减X-3分之X-2=X-5分之X-4减X-6分之X-5.
要具体.

(X-1)/(X-2)-(X-2)/(X-3)=(X-4)/(X-5)-(X-5)/(X-6)
[X^2-4X+3-X^2+4X-4]/[(X-2)(X-3)] =-1/[(X-5)(X-6)]
X=4

先共同去分母
解出
代入分母中,分母不等于0

X=4 原式=(X-1)/(X-2)-(X-2)/(X-3)=(X-4)/(X-5)-(X-5)/(X-6)左边通分=[X^2-4X+3-X^2+4X-4]/[(X-2)(X-3)] = -1/[(X-2)(X-3)] 右边通分=-1/[(X-5)(X-6)] 等式两边相等,同时去掉-1,原式可以化简为:X^2-11X+30=X^2-5X+6...