已知椭圆X²/a²+y²/b²=1(a>b>0)的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点E(a²/c,0)的直线与椭圆相交于A,B两点,且F1A‖F2B,|F1A|=

问题描述:

已知椭圆X²/a²+y²/b²=1(a>b>0)的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点E(a²/c,0)的直线与椭圆相交于A,B两点,且F1A‖F2B,|F1A|=2|F2B|
1.求椭圆离心率
2.求直线AB的斜率

由F1A//F2B且|F1A|=2|F2B|
☞|EF1|/|EF2|=|F2B|/|F1A|=1/2*(a²/c-c)/(a²/c+c)☞e=√3/3
2)b2=a2-c2=2c2
∴ 2x2+3y2=6c2
设直线AB:y=k(x-a²/c)=k(x-3c)①,设A(x1,y1)、B(x2,y2),
2x²+3y²=6c²②,①②☞(2+3k²)x²-18k²cx+27k²c²-6c²=2,Δ>0即-√3/3