如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角
问题描述:
如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:
≈1.73,
3
≈1.41)
2
答
设OC=x,
在Rt△AOC中,
∵∠ACO=45°,
∴OA=OC=x,
在Rt△BOC中,
∵∠BCO=30°,
∴OB=OC•tan30°=
x,
3
3
∵AB=OA-OB=x-
x=2,解得x=3+
3
3
≈3+1.73=4.73≈5米,
3
∴OC=5米.
答:C处到树干DO的距离CO约为5米.