如图,M·N分别是三角形ABC的边AC·BC上的点,在AB上求做一点P使三角形PMN的周长最小,并说明你这样作的理由.
问题描述:
如图,M·N分别是三角形ABC的边AC·BC上的点,在AB上求做一点P使三角形PMN的周长最小,并说明你这样作的理由.
答
两种方法:
(1)作M关于AB的对称点M',连结M'N,交AB于一点,这一点即为所求的P点.
(2)作N关于AB的对称点N',连结MN',交AB于一点,这一点即为所求的P点.
证明如下:
作N关于AB的对称点N',连结MN',交AB于一点P;则AB垂直平分NN'
连接PN,则PN=PN';
∴△PMN的周长为:C=MN+MP+PN=MN+MP+PN'=MN+MN';
现在边AB上任取一点P',P'与P不重合;
连接P'M,P'N',P'N;则P'N=P'N';
在△P'MN'中,有P'M+P'N'<MN'.
∴在△P'MN的周长C'=MN+MP'+P'N=MN+MP'+P'N'<MN+MN'=C;
即点P为所求的点