设全集U=A∪B={x∈N*|lgx<1},若A∩∁UB={m|m=2n+1,n=0,1,2,3,4},则集合B= ___ .

问题描述:

设全集U=A∪B={x∈N*|lgx<1},若A∩∁UB={m|m=2n+1,n=0,1,2,3,4},则集合B= ___ .

∵U=A∪B={x∈N*|lgx<1}={x∈N*|x<10}={1,2,3,4,5,6,7,8,9},
又∵A∩∁UB={m|m=2n+1,n=0,1,2,3,4}={1,3,5,7,9},
∴∁UB={1,3,5,7,9},
∴B={2,4,6,8},
故填:{2,4,6,8}.
答案解析:解对数不等式得全集,结合A∩∁UB得集合∁UB,从而求得B.
考试点:交、并、补集的混合运算;集合的包含关系判断及应用.


知识点:题属于以不等式为依托,考查集合的交集、补集的基础题,也是高考常会考的题型.