有a.b两个质量相同的物体,以相同的速度相向运动,1个人站在a上,向b跳去,使得a.b避免碰撞
问题描述:
有a.b两个质量相同的物体,以相同的速度相向运动,1个人站在a上,向b跳去,使得a.b避免碰撞
已知:a.b的质量与速度,人的质量
求:人最小的速度
答
设ab质量为m,人质量为M,原来速度大小为v,
最后共同速度为v',人最小的速度为V,
根据题意可列方程:
以整体为研究对象:Mv=(2m+M)v'
以人和b为研究对象:MV-mv=(M+m)v'
解上述方程组可得答案:V=M(m+M)v/[M(2m+M)]+mv/M人是从a跳到b上。a.b不碰撞,说明a.b同时向左/右以相同速度移动,所以有2个答案人是从a跳到b上。a.b不碰撞,说明a.b同时向左/右以相同速度移动,所以有2个答案a.b不碰撞时人的最小速度的条件就是最终三者有相同的速度,只有一个答案。a.b移动可向左也可向右,而人只从a跳到b上,怎么会只有一个答案呢因为问的不仅仅是不相撞,而是不相撞且人有最小速度,所以只有唯一解一种情况。 你说的a向左移动(设原来a向右运动)的情况,已经不是人有最小速度的情况。而是虽然满足不相撞的条件,但人的速度要比最小速度大。