求值:1+cos20°2sin20°−sin10°(1/tan5°−tan5°).
问题描述:
求值:
−sin10°(1+cos20°
2sin20°
−tan5°). 1 tan5°
答
原式=
−sin10° (2cos210° 4sin10°cos10°
−cos5° sin5°
)=sin5° cos5°
− 2sin10° (2cos210° 4sin10° cos10°
)
cos25° −sin25° 2sin5°cos5°
=
−2cos10° =cos10° 2sin10°
cos10° −2sin20° 2sin10°
=
=cos10°−2sin(30°−10°) 2sin10°
cos10°−2sin30°cos10° +2cos30° sin10° 2sin10°
=cos30° =
3
2