方程7x2-(k+13)x+k2-k-2=0(k是实数)有两个实根α、β,且0<α<1,1<β<2,那么k的取值范围是(  )A.3<k<4 B.-2<k<-1C.3<k<4或-2<k<-1 D.无解 有种解法是这样的解:记f(x)=7x2-(k+13)x+k2-k-2,由题意得: f(0)=k2-k-2>0 f(1)=k2-2k-8<0 f(2)=k2-3k>0 ⇒3<k<4 或-2<k<-1,∴k的取值范围是3<k<4或-2<k<-1,故选C.不懂耶,为什么可以判断不同的x值代入后化简出来的式子大于还是小于0啊(比如说,为什么k²-k-2>0?)帮我解决一下这个疑问后,如果还有更好更简便的方法,也请告诉我,好吗?谢谢O(∩_∩)O~我的解法是这样;因为有方程两个不同实根,所以先用判别式求出k的一个取值范围……再用韦达定理,通过以只有k的式子代表α+β和α*β,因为α、β分别有取值范围,所以α+β和α*β同样也可以大体知道取值范围(但是不知道这样的是否准确),又可以求出k的另外的取值范围,再

问题描述:

方程7x2-(k+13)x+k2-k-2=0(k是实数)有两个实根α、β,且0<α<1,1<β<2,那么k的取值范围是(  )
A.3<k<4 B.-2<k<-1C.3<k<4或-2<k<-1 D.无解

有种解法是这样的
解:记f(x)=7x2-(k+13)x+k2-k-2,
由题意得: f(0)=k2-k-2>0 f(1)=k2-2k-8<0 f(2)=k2-3k>0 ⇒3<k<4 或-2<k<-1,
∴k的取值范围是3<k<4或-2<k<-1,
故选C.

不懂耶,为什么可以判断不同的x值代入后化简出来的式子大于还是小于0啊(比如说,为什么k²-k-2>0?)
帮我解决一下这个疑问后,如果还有更好更简便的方法,也请告诉我,好吗?谢谢O(∩_∩)O~
我的解法是这样;因为有方程两个不同实根,所以先用判别式求出k的一个取值范围……
再用韦达定理,通过以只有k的式子代表α+β和α*β,因为α、β分别有取值范围,所以α+β和α*β同样也可以大体知道取值范围(但是不知道这样的是否准确),又可以求出k的另外的取值范围,再在这几个范围力得到公共部分,可是用这种方法求出来的结果很复杂,也没有一个选项是我求出来的那样的,请问这种方法可行吗?为什么?