(2007•青岛)已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时
问题描述:
(2007•青岛)已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.
答
BP,
即t=
(3-t),t=1(秒),
当∠BPQ=90°时,BP=
BQ,
3-t=
t,t=2(秒),
答:当t=1秒或t=2秒时,△PBQ是直角三角形.
(2)过P作PM⊥BC于M,
△BPM中,sin∠B=
,
∴PM=PB•sin∠B=
(3-t),
∴S△PBQ=
BQ•PM=
•t•
(3-t),
∴y=S△ABC-S△PBQ,
=
×3×(3×
)-
•t•
(3-t),
=
t2-
t+
,
∴y与t的关系式为y=
t2-
t+
,
假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的
,
则S四边形APQC=
S△ABC,
∴
t2-
t+
=
×
×32×
(1)根据题意得AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3-t)cm,
△PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则
∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=
1 |
2 |
即t=
1 |
2 |
当∠BPQ=90°时,BP=
1 |
2 |
3-t=
1 |
2 |
答:当t=1秒或t=2秒时,△PBQ是直角三角形.
(2)过P作PM⊥BC于M,
△BPM中,sin∠B=
PM |
PB |
∴PM=PB•sin∠B=
| ||
2 |
∴S△PBQ=
1 |
2 |
1 |
2 |
| ||
2 |
∴y=S△ABC-S△PBQ,
=
1 |
2 |
| ||
2 |
1 |
2 |
| ||
2 |
=
| ||
4 |
3
| ||
4 |
9
| ||
4 |
∴y与t的关系式为y=
| ||
4 |
3
| ||
4 |
9
| ||
4 |
假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的
2 |
3 |
则S四边形APQC=
2 |
3 |
∴
| ||
4 |
3
| ||
4 |
9
| ||
4 |
2 |
3 |
1 |
2 |
|