设集合A={(x,y)|m/2大于等于(x-2)^2+y^2小于等于 m^2 x,y属于R} B={(x,y)/2m大于等于 x+y 小于等于2m+1若A∩B不等于空集 则求实数m的取值范围

问题描述:

设集合A={(x,y)|m/2大于等于(x-2)^2+y^2小于等于 m^2 x,y属于R} B={(x,y)/2m大于等于 x+y 小于等于2m+1
若A∩B不等于空集 则求实数m的取值范围

m/2 m^2-m/2>=0=>m>=1/2或mA集合表示的一个圆环
2m这个题目数形结合就好
第一条直线 x+y-2m=0
圆心(2,0)
x+y-2m=0和圆 (x-2)^2+y^2=m^2
d=|2+0-2m|/根号2=|m|
=>m=2+根号2 或m=2-根号2
x+y-(2m+1)=0和圆(x-2)^2+y^2=m^2
d=|2-(2m+1)|/根号2=|m|
=>m=(2+根号2)/2或m=(2-根号2)/2
所以不等于空集 (2-根号2)/2又因为m>=1/2或m所以 1/2

m/2=0=>m>=1/2或m