一道线性代数题,若A为三阶方阵,且|A+2E|=0,|2A+E|=0,|3A-4E|=0,则|A|=
问题描述:
一道线性代数题,若A为三阶方阵,且|A+2E|=0,|2A+E|=0,|3A-4E|=0,则|A|=
答
因为 |A+2E|=0,|2A+E|=0,|3A-4E|=0
所以 -2,-1/2,4/3 是A的特征值
又A是3阶方阵
所以 -2,-1/2,4/3 是A的全部特征值
所以 |A| = (-2)*(-1/2)*(4/3) = 4/3