一张正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,在沿一条不过任何顶点
问题描述:
一张正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,在沿一条不过任何顶点
请写出思考过程,因为我有答案,不需要答案,请尽快!
一张正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,在沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分。如此下去,最后得到了34个六十二边形和一些多边形纸片则至少要剪多少刀数?
答
(1)每剪一刀多出4个边,这意味着最后的总边数除以4,再减1,就等于剪的刀数.(2)最后得到的多边形集合可以分成这样的若干组,而无剩余,每组中:要么,只有一个边数大于4的多边形A,剩下的为三角形A的边数减4等于三角形...