已知:如图,点E为四边形ABCD外一点,连接EB、EA、ED、EC,其中EA、ED与BC交点分别为M、N,且AD∥BC,AE=DE,BE=CE.求证:AB=DC.

问题描述:

已知:如图,点E为四边形ABCD外一点,连接EB、EA、ED、EC,其中EA、ED与BC交点分别为M、N,且AD∥BC,AE=DE,BE=CE.求证:AB=DC.

证明:∵BE=CE,
∴∠EBM=∠ECN,
∵∠AMB=∠BEM+∠EBM,∠DNC=∠CEN+∠ECN,
∴∠AEB=∠DEC,
在△ABE和△DEC中,

AE=DE
∠AEB=∠DEC
BE=CE

∴△ABE≌△DEC(SAS),
∴AB=CD.