英语翻译ON THE NUMBER OF CONGRUENCE CLASSES OF PATHSZHICONG LIN AND JIANG ZENGAbstract.Let Pn denote the undirected path of length n − 1.The cardinality of the set of congruence classes induced by the graph homomorphisms from Pn onto Pk is determined.This settles an open problem of Michels and Knauer (Disc.Math.,309 (2009) 5352-5359).Our result is based on a new proven formula of the number of homomorphisms between paths.Keywords:Graph,graph endomorphisms

问题描述:

英语翻译
ON THE NUMBER OF CONGRUENCE CLASSES OF PATHS
ZHICONG LIN AND JIANG ZENG
Abstract.Let Pn denote the undirected path of length n − 1.The cardinality of the set of congruence classes induced by the graph homomorphisms from Pn onto Pk is determined.This settles an open problem of Michels and Knauer (Disc.Math.,309 (2009) 5352-5359).Our result is based on a new proven formula of the number of homomorphisms between paths.
Keywords:Graph,graph endomorphisms,graph homomorphisms,paths,lattice paths
1.Introduction
We use standard notations and terminology of graph theory in [3] or [6,Appendix].The graphs considered here are finite and undirected without multiple edges and loops.Given a graph G,we write V (G) for the vertex set and E(G) for the edge set.A homomorphism from a graph G to a graph H is a mapping f :V (G) → V (H) such that the images of adjacent vertices are adjacent.An endomorphism of a graph is a homomorphism from the graph to itself.Denote by Hom(G,H) the set of homomorphisms from G to H and by End(G) the set of endomorphisms of a graph G.For any finite set X we denote by |X| the cardinality of X.A path with n vertices is a graph whose vertices can be labeled v1,...,vn so that vi and vj are adjacent if and only if |i − j| = 1; let Pn denote such a graph with vi = i for 1 ≤ i ≤ n.Every endomorphism f on G induces a partition ρ of V (G),also called the congruence classes induced by f,with vertices in the same block if they have the same image.
Let C (Pn) denote the set of endomorphism-induced partitions of V (Pn),and let |ρ| denote the number of blocks in a partition ρ.For example,if f ∈ End(P4) is defined by f(1) = 3,f(2) = 2,f(3) = 1,f(4) = 2,then the induced partition ρ is {{1},{2,4},{3}} and |ρ| = 3.
The problem of counting the homomorphisms from G to H is difficult in general.How- ever,some algorithms and formulas for computing the number of homomorphisms of paths have been published recently (see [1,2,5]).In particular,Michels and Knauer [5] give an algorithm based on the epispectrum Epi(Pn) of a path Pn.They define Epi(Pn) = (l1(n),...,ln−1(n)),where
lk(n) = |{ρ ∈ C (Pn) :|ρ| = n − k + 1}|.(1.1)
Here a misprint in the definition of lk(n) in [5] is corrected.
In [5],based on the first values of lk(n),Michels and Knauer speculated the following conjecture.

的余类路径
张志聪林江曾
总结的数量。 PN代表无向路径长度为N - 1。从Pn决定PK图形同态引起的同余类的集合的基数。这解决了一个公开问题米歇尔斯和柯纳尔(Disc.数学系,309(2009)5352-5359)。我们的研究结果是基于同态之间的有效数量的一个新的路径。
关键词:图表,图自同态,同态,路径,格子路径
1。引进
我们使用标准的符号和术语,图形理论[3]或[6附录]。这里考虑的是有限的图表和指导,无毛边和回收。我们写信给定图G,顶点集V(G)和边集E(G)。从图G中,前一个图H是一个同态映射f:V(G)→V(H),使得相邻的顶点相邻的图像。从图同态,从图本身是一个同态。记住从G到相同的状态,并最终在H(G)图G的同态收集磡(G,H),我们表示任何有限集基地X | X |新路径n个顶点vi和vj为图它的顶点可以被标记为V1,...,VN相邻当且仅当| I - J | = 1;图PN代表,VI = I 1≤I≤N。每个自同态F?诱导
(PN),收集来自同一个国家的地区教育ρ引起的V(G),也被称为由f诱导的同余类,如果它们具有相同的顶点在同一个街区的图形。 V(Pn)的,并让|对|表示在一个分区中ρ块的数目。例如,如果f∈端的(P4)被定义为F(1)= 3,F(2)= 2,F(3)= 1,F(4)= 2,则诱导分区ρ{{1 } {2,4},{3}和|ρ| = 3。
计数从G到H的同态,问题是很难常见。然而,最近发表的算法和公式同态的路径([1,2,5])。米歇尔斯和克瑙尔[5]显示上:EPI epispectrum(PN)PN算法的方式。他们长盈集团(PN)=(L1(N),...,LN-1(N)),其中
LK(N)= | {P∈C(PN):|ρ| = - K + 1} |。 (1.1)
的LK(N)的定义[5]打印错误得到纠正。
[5] LK(N),米歇尔斯和柯纳尔值的基础上的猜测如下猜想。

目测是数学相关的论文 还有摘要 简介 其他的看不太懂。太专业。

同余类的路径ZHICONG林,江曾摘要的数量.令Pn表示无向路径长度为n - 1.确定从的Pn到PK的图形同态诱导的同余类的集合的基数.这解决的一个公开问题的的米歇尔斯和克瑙尔(Disc.数学系,309(2009)5352-5359).我们的结...