设abc都是实数,且满足(2-a)^2+√a+b+c+|c+8|=0,ax^2+bx+c=0,求代数式x^2+x+1的值

问题描述:

设abc都是实数,且满足(2-a)^2+√a+b+c+|c+8|=0,ax^2+bx+c=0,求代数式x^2+x+1的值

平方,根号和绝对值都大于等于0,相加等于0若有一个大于0,则至少有一个小于0,不成立.所以三个式子都等于0所以2-a=0,a+b+c=0,c+8=0a=2,c=-8b=-a-c=6ax²+bx+c=02x²+6x-8=02(x-1)(x+4)=0x=1,x=-4所以x²+x+...