如何证明等腰三角形三点共圆
问题描述:
如何证明等腰三角形三点共圆
答
设△ABC中,AB=AC,D为BC中点,连AD,
作AB的垂直平分线L,交AD于O,只须证明O为△ABC外接圆的圆心.
因为O在AB的垂直平分线上,所以OA=OB,
连接CO,很容易证得△OBD≡△OCD,即有OB=OC,
从而证得A、B、C在圆O上.