计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

问题描述:

计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

原式=∫xdx∫dy∫dz
=∫xdx∫(1-x-2y)dy
=∫x[(1-x)²/4]dx
=1/4∫(x-2x²+x³)dx
=(1/2-2/3+1/4)/4
=1/48.