1.已知直线L1:2x+3y-6=0与x轴,y轴分别相交于点A,B,试在直线L2:y=x上求一点P,使||PA|-|PB||最大,并求出最大值.

问题描述:

1.已知直线L1:2x+3y-6=0与x轴,y轴分别相交于点A,B,试在直线L2:y=x上求一点P,使||PA|-|PB||最大,并求出最大值.
2.已知过点A(1,1)且斜率为-m(m>0)的直线L与X轴,Y轴分别交于点P,Q,过点P,Q分别作直线2X+Y=0的垂线,垂足分别为点R,S,求四边形PRSQ的面积的最小值.
3.为了绿化城市,某市计划在矩形ABCD内建一个矩形草坪,其中三角形AEF区域为文物保护区,不能占用.经测量,AB=100m,BC=80m,AE=30m,AF=20m.应如何设计,才能使草坪的面积最大?
现只要求做第3题,

1.A(3,0)
B(0,2)
做点B关于直线y=x对称点B'(2,0)
连结AB'交直线y=x于点P(0,0)即为所求P点
此时,||PA|-|PB||即线段AB'的长度
可去直线y=x上其他任意点P',根据三角形两边之差小于第三边
可知||P'A|-|P'B||小于线段AB'长度
所以,P点为(0,0),最大值为1