证明:如果初始射线通过椭圆的一个焦点,则当n增加时初时光线经n次反射后将趋近于主轴

问题描述:

证明:如果初始射线通过椭圆的一个焦点,则当n增加时初时光线经n次反射后将趋近于主轴
该问题见于R.柯朗的名著《什么是数学》(第二版,2006,复旦大学出版社)第365页

这本书我看过 也证明过
其实很简单 先画个椭圆 标好焦点 从焦点随意角度画一射线 由椭圆性质反射光线必过另一焦点知 1,射线方向背离圆心:令第一条线与长轴交角的锐角为a 第二条线与长轴交角的锐角为b 明显的a为b的外角所以b小于a 不停反射直至角度趋于0 用数学归纳法可证 2,射线方向指向圆心 即指向短轴 或如垂直长轴:经过一次反射后 情况同1 不证了 ,3.垂直短轴更不用证了
补充:反射光线必过另一焦点的证明用简单的高等数学就可证明
这本书本人是很喜欢的 如果喜欢数学要坚持下去 我曾经因放弃过她 至今还在悔恨