若fx=ax+b 则f(x1+x2/2)=fx1+fx2/2

问题描述:

若fx=ax+b 则f(x1+x2/2)=fx1+fx2/2
若gx=x的平方+ax+b则g((x1+x2)/2)小于等于(gx1+gx2)/2

证明:
若fx=ax+b
f((x1+x^2)/2)=a(x1+x^2)/2)+b =(ax1+ax^2)/2+b
(fx1+fx^2)/2=(ax1+b+ax^2+b)/2=(ax1+ax^2)/2+b
所以f((x1+x^2)/2)=(fx1+fx^2)/2
g(x)=x²+ax+b
g((x1+x2)/2)=(x1+x2)²/4+a(x1+x2)/2+b
(g(x1)+g(x2))/2=(x1²+ax1+b+x2²+ax2+b)/2+a(x1+x2)/2+b
(g(x1)+g(x2))/2-g((x1+x2)/2)
=(x1²+x2²)/2-(x1+x2)²/4
=(x1²+x2²-2x1x2)/4
=(x1-x2)²/4
≥0
所以g((x1+x2)/2)≤(g(x1)+g(x2))/2