求{X1-3X2+X3-2X4=0;-5X1+X2-2X3+3X4=0;-X1-11X2+2X3-5X4=0;3X1+5X2+X4=0
问题描述:
求{X1-3X2+X3-2X4=0;-5X1+X2-2X3+3X4=0;-X1-11X2+2X3-5X4=0;3X1+5X2+X4=0
答
解: 增广矩阵 =
1 -31 -2
-51 -23
-1 -11 2 -5
3501
r2+5r1,r3+r1,r4-3r1
1 -31 -2
0 -14 3 -7
0 -14 3 -7
014 -3 7
r2+r4,r3+r4
1 -31 -2
0000
0000
014 -3 7
r4*(1/14), r1+3r4
105/14 -1/2
00 0 0
00 0 0
01 -3/141/2
方程组的通解为: c1(5,-3,-14,0)'+c2(1,-1,0,2),c1,c2为任意常数.