求解微分方程:dy/dt = (k/2)*(y-a)*(y-b),k,a,b为常数,*为乘, 谢谢!
问题描述:
求解微分方程:dy/dt = (k/2)*(y-a)*(y-b),k,a,b为常数,*为乘, 谢谢!
答
dy/dx=(k/2)(y-a)(y-b)1/[(y-a)/(y-b)]dy=k/2dx设1/((y-a)(y-b))=m/(y-a)-m/(y-b)=(my-mb-my+am)/(y-a)(y-b)am-mb=1 m=1/(a-b)所以:1/[(y-a)(y-b)]=1/(a-b)[1/(y-a)-1/(y-b)]两边积分:1/(a-b) ln[(y-a)/(y-b)]=kx/...