x趋近三分之派的sin(x-三分之派)比上1-2cosx的极限

问题描述:

x趋近三分之派的sin(x-三分之派)比上1-2cosx的极限

原式=lim(x->π/3)[cos(x-π/3)/(2sinx)] (0/0型极限,应用罗比达法则)
=cos(π/3-π/3)/(2sin(π/3))
=1/(2*(√3/2))
=√3/3.有什么简单直接一点的方法么?这个方法我还没有学,谢谢初级解法是:(等价代换法)(但此法较复杂)∵lim(y->0)[siny/y]=1,lim(y->0)[(1-cosy)/(y²/2)]=1∴当y->0时,siny与y等价,1-cosy与y²/2等价。即siny~y,1-cosy~y²/2。故原式=lim(y->0)[siny/(1-2cos(y+π/3))](令y=x-π/3)=lim(y->0)[siny/(1-cosy+√3siny)]=lim(y->0)[y/(y²/2+√3y)](应用等价代换siny~y,1-cosy~y²/2)=lim(y->0)[1/(y/2+√3)]=1/(0+√3)=1/√3=√3/3。