已知向量a,b是平面内两个单位向量,且a,b的夹角为60°,若向量a-c与b-c的夹角为120°,则|c|的最大值是

问题描述:

已知向量a,b是平面内两个单位向量,且a,b的夹角为60°,若向量a-c与b-c的夹角为120°,则|c|的最大值是

将a,b,c三条向量的起点平移到原点即OA=a,OB=b,OC=c,因为a,b的夹角为60°,a-c与b-c的夹角为120°,所以OABC四点共圆,圆心为△OAB的外心,不过△OAB是正三角形,所以圆心到点O的距离为sqrt(3)/3,OC的最大值即为2/sqrt(3).