利用换元法解下列方程: (1)(x+2)2+6(x+2)-91=O; (2)x2-(1+23)x-3+3=0.

问题描述:

利用换元法解下列方程:
(1)(x+2)2+6(x+2)-91=O;
(2)x2-(1+2

3
)x-3+
3
=0.

(1)(x+2)2+6(x+2)-91=O;
设x+2=y,则原方程可变形为:
y2+6y-91=0,
解得:y1=7,y2=-13,
当y1=7时,x+2=7,
x1=5,
当y2=-13时,x+2=-13,
x2=-15;
(2)x2-(1+2

3
)x-3+
3
=0,
[x-(3+
3
)][x+(2-
3
)]=0,
x-(3+
3
)=0,x+(2-
3
)=0,
x1=3+
3
,x2=-2+
3