求证:Ck^K+Ck^(k+1)+Ck^(k+2)+Ck^(k+3)+...+Ck^(k+n)=C(k+1)^(k+n+1)(组合问题)急!
问题描述:
求证:Ck^K+Ck^(k+1)+Ck^(k+2)+Ck^(k+3)+...+Ck^(k+n)=C(k+1)^(k+n+1)(组合问题)急!
答
即证明C(k+1)^(k+n+1)-C(k+1)^(k+n+1)=Ck^(k+n+1)左边=(k+n+2)!/[(n+1)!*(k+1)!]-(k+n+1)!/[n!*(k+1)!]=[(k+n+2)*(k+n+1)!-(n+1)*(k+n+1)!]/[(n+1)!*(k+1)!]=(k+1)*(k+n+1)!/[(n+1)!*(k+1)!]=(k+n+1)!/k!(n+1)!=右边...