设P是等轴双曲线x^2-y^2=a^2(a>0)右支上一点,F1,F2是左右焦点,若向量PF2*F1F2=0,|PF1|=6,双曲线方程?

问题描述:

设P是等轴双曲线x^2-y^2=a^2(a>0)右支上一点,F1,F2是左右焦点,若向量PF2*F1F2=0,|PF1|=6,双曲线方程?

PF1=6,PF1-PF2=2a
PF2=6-2a
c^2=a^2+b^2=2a^2
PF2*F1F2=0,说明PF2与F1F2垂直,则有:
F1F2^2=PF1^2+PF2^2
4c^2=36+(6-2a)^2
4*2a^2=36+36-24a+4a^2
4a^2+24a-72=0
a^2+6a-18=0
(a+3)^2=27
a=3根号3-3
故方程是x^2-y^2=(3根号3-3)^2