求一个第二类曲面积分的解答

问题描述:

求一个第二类曲面积分的解答
∫∫xydydz+yzdzdx+xzdxdy,其中S是坐标平面和x+y+z=1 所为四面体表面的外侧?
s是封闭的

由于轮换对称性,对三个坐标平面上的积分面的第二类曲面积分值相等,不妨取左侧面对该积分计算:由于该面上的单位法向量为n=(0,-1,0)带入积分有∫∫xydydz+yzdzdx+xzdxdy= -∫∫yzdS其中
dS=dzdx所以∫∫xydydz+yzdzdx+xzdxdy= -∫∫yzdzdx,化为二重积分,积分面为左侧面,带入y=0,
∫xydydz+yzdzdx+xzdxdy= -∫∫yzdzdx=0
再计算x+y+z=1面上的积分,由于轮换对称性,在该积分面上∫∫xydydz=∫∫yzdzdx=∫∫xzdxdy,则
∫∫xydydz+yzdzdx+xzdxdy=3∫∫xzdxdy由于定向为正向,则由1-x-y=z带入得二重积分3∫∫xzdxdy=
3∫∫x(1-x-y)dxdy 积分面为xy坐标面上的0≤x≤10≤y≤1-x最终计算值为1/8