已知多项式2x^3 + ax^2 + bx + 9有两个因式 2x+1和x-2,那么a+b的值为 (急!)

问题描述:

已知多项式2x^3 + ax^2 + bx + 9有两个因式 2x+1和x-2,那么a+b的值为 (急!)

有两个因式(2x+1)(x-2),则另一个为(x+k),则有:
-2k=9;
k=-4.5;
原式=(2x+1)(x-2)(x-4.5)=2x³-12x²-15.5x+9;
所以a+b=-12-15.5=-27.5;

∵有因式2x+1及x-2
∴当x=-1/2 x=2时代数式的值为0
即-1/4+a/4-b/2+9=0
16+4a+2b+9=0
∴a=-14
b=31/2
∴a+b=3/2