什么是可交换矩阵

问题描述:

什么是可交换矩阵

满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A.
可交换矩阵的一些性质
性质1
设A ,B 可交换,则有:(1) A·B = B ·A ,( AB) = A B,其中m ,k 都是正整数;
(2) A f ( B) = f ( B ) A ,其中f ( B ) 是B 的多项式,即A 与B 的多项式可交换; (3) A - B = ( A - B ) ( A + A B ⋯+B ) = ( A + A B + ⋯+ B) ( A - B)
性质2
设A ,B 可交换, (1) 若A ,B 均为对合矩阵,则AB 也为对合矩阵;
 (2) 若A ,B 均为幂等矩阵,则AB ,A + B -AB 也为幂等矩阵;
 (3) 若A ,B 均为幂幺矩阵,则AB 也为幂幺矩阵;
(4) 若A ,B 均为幂零矩阵,则AB ,A + B 均为幂零矩阵.
(矩阵二项式定理)