如图,点C为线段AB上一动点,△ACD,△CBE是等边三角形,AE交BD于点O,AE交CD于点P,BD交CE于点Q,连接OC,下列结论中:①PE=BQ,②∠AOD=60°,③EO=BQ,④OC+OE=OB,⑤OC平分∠AOB,正确的结论有_
问题描述:
如图,点C为线段AB上一动点,△ACD,△CBE是等边三角形,AE交BD于点O,AE交CD于点P,BD交CE于点Q,连接OC,下列结论中:①PE=BQ,②∠AOD=60°,③EO=BQ,④OC+OE=OB,⑤OC平分∠AOB,正确的结论有______(只填序号).
答
∵△ACD,△CBE是等边三角形
∴BC=CE,CD=AC,∠BCD=∠ACE
∴△ACE≌△DCB
∴∠AEC=∠CBD,∠PCE=∠QCB,BC=EC
∴△BCQ≌△ECP
∴PE=BQ①对,故EO≠BQ.③错
由上可知,∠CEA=∠CBO,∠EQO=∠BQC
∴△BCQ∽△E0Q
∴∠BCQ=∠EOQ=∠AOD=60°②对.
∴∠POQ=120°
∵△BCQ∽△E0Q
∴
=OQ CQ
QE BQ
∵∠OQC=∠BQE
∴△OQC∽△EQB
∴∠COQ=∠CEB=60°
∴∠POC=60°
∴OC平分∠AOB⑤对.
连接PQ,过点P做OP=OM.
∵∠POM=60°
∴△OPM为等边三角形
∴∠OMC=60°
∴∠PMC=120°
又∵∠POQ=120°
∴∠PMC=∠POQ,易证PQ∥BC
∴∠OQP=∠DBC
∵∠DBC=∠AEC
∴∠OQP=∠AEC
∵∠OPC=∠OPC,∠AOC=∠PCE=60°
∴△CPO∽△EPC
∴∠PEC=∠PCO
∴∠PCO=∠OQP
又∵OP=PM
∴△OPQ≌△MPC
∴MC=OQ
∴OC+OE=OP+OQ+OE=PE+OQ=QB+OQ=OB④对.
故①②④⑤是正确的.