某超市经销一种销售成本为每件60元的商品,据市场调查发现,如果按每件70元销售,一周能售出500件,若销售单价每涨1元,每周销售就减少10件,设销售价为每件x元(x≥70),一周的销售

问题描述:

某超市经销一种销售成本为每件60元的商品,据市场调查发现,如果按每件70元销售,一周能售出500件,若销售单价每涨1元,每周销售就减少10件,设销售价为每件x元(x≥70),一周的销售量为y件.
(1)写出y与x的函数关系式,并写出x的取值范围.
(2)设一周的销售利润为w,写出w与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?
(3)在超市对该种商品投入不超过18000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?

(1)由题意得:
y=500-10(x-70)=1200-10x(70≤x≤120);
(2)W=(x-60)(1200-10x)=-10x2+1800x-72000=-10(x-90)2+9000
当70≤x≤90时,利润随着单价的增大而增大.
(3)由题意得:-10x2+1800x-72000=8000,
x2-180x+8000=0,
即(x-80)(x-100)=0,
x1=80,x2=100,
当x=80时,成本=60×[500-10×(80-70)]=24000>18000不符合要求,舍去.
当x=100时,成本=60×[500-10×(100-70)]=12000<18000符合要求.
∴销售单价应定为100元,才能使得一周销售利润达到8000元的同时,投入不超过18000元.