求微分方程dy/dx+y=e−x的通解.
问题描述:
求微分方程
+y=e−x的通解. dy dx
答
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x
∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).