我们知道微分方程解答中经常碰到(dy/y)=(dx/x)的结果然后积分出现ln|y|=ln|x|+C1进一步化为|y|=e^C1 |x|最后化为y=Cx (C=±e^C1 ),然而很多练习题的解答并不是这样的,感觉那些解答都不需要考虑绝对值

问题描述:

我们知道微分方程解答中经常碰到(dy/y)=(dx/x)的结果然后积分出现ln|y|=ln|x|+C1进一步化为|y|=e^C1 |x|最后化为y=Cx (C=±e^C1 ),然而很多练习题的解答并不是这样的,感觉那些解答都不需要考虑绝对值似的,这是为什么呢?
举个例子吧:
微分方程y''+(y')^2 =0的通解是__________.
y=ln(x+C1)+C2.
而我算出来的写为:y=ln|x+C1|+C2.因为我考虑到绝对值问题,但答案没有绝对值,很困惑.包括很多练习题解答都直接跳过绝对值这个不写直接得出后面的过程,纳闷.
首先谢谢三楼这位兄弟的回答,y=ln(x+C1)+C2与y=ln|x+C1|+C2的定义域不一样吧?所以我才问这个问题的啊

你想一下其实加不加绝对值,其实问题不是很大,或者说不怎么必要,只要x能取遍所有实数,y也能同样取遍所有的,主要是因为有一个任意的常数在起到调节作用!它可以起到平衡的作用!如果就你的第一题|y|=e^C1 |x| 如果y没有绝对值的话,那最后答案肯定就不能去掉x的绝对值的!同样第二题,其实当你写出答案,y=ln(x+C1)+C2.时候就已经默认(x+C1)>0 加不加绝对值意义不大的!可能觉得有些模糊,没有说清楚,仅供参考吧!
实在不行,以后做题目的时候,你还是按照现在的方法做,然后写答案的时候,看一下是否能去掉绝对值
(只用判断如果去掉绝对值,x的取值与y的取值范围是否变化了?如果没有变化,就可以去啊,判断很简单的,只用看它们的范围)