有关双曲线

问题描述:

有关双曲线
已知中心在原点的双曲线C:(x^2)/4-(y^2)/5=1,斜率为k的直线l交c于M和N,MN的垂直平分线与两坐标轴围城的面积为81/2,求k的范围.(-无穷,-5/4)∪(-根号5/2,0)∪(0,根号5/2)∪(5/4,+无穷),

设直线L:y=kx+b(k≠0),代入(x^2)/4-(y^2)/5=1,得x^2(5-4k^2)-8kbx-4b^2-20=0,(x1+x2)/2=4kb/(5-4k^2),(y1+y2)/2=5b/(5-4k^2),▲=64k^2b^2+4(5-4k^2)(4b^2+20)>0,得b^2>4k^2-5.所以MN的中点坐标为[4kb/(5-4k^2),5b...