如图,半径为4的两等圆相外切,它们的一条外公切线与两圆围成的阴影部分中,存在的最大圆的半径等于_.

问题描述:

如图,半径为4的两等圆相外切,它们的一条外公切线与两圆围成的阴影部分中,存在的最大圆的半径等于______.

如图,设小圆半径为R,分别从圆心向公切线作垂线,
由切线的性质知,四边形ABFS,CDFE是矩形,
AS=BF=4,CD=EF=R,
四边形HBFD是正方形,DF=BF=4,
∴BE=4-R,
由勾股定理知,BC2=CE2+BE2
即(4+R)2=42+(4-R)2
∴R=1.