高一的解析几何题..
问题描述:
高一的解析几何题..
已知曲线C:x^2+y^2-4mx+2my+20m-20=0.求证:
不论m取何实数,曲线C恒过一定点;
当m不等于2时,曲线C是一个圆,且圆心在一条定直线上
答
1)证明:x^2+y^2-4mx+2my+20m-20=0可化为
(x-2m)^2+(y+m)^2=5(m-2)^2
当m=2时,C为一个点,则该定点坐标为(4,-2)
将该定点带入原方程C,得0=0,与m无关.所以不论m取何实数,曲线C恒过定点(4,-2).
2)证明:当m=/2时,5(m-2)^2>0,所以曲线C表示一个圆心为(2m,-m),半径为(根号5)(m-2)的圆.
圆心所在的方程为y=(-m/2m)x,即y=(-1/2)x,所以圆心在一条直线上.