已知角阿尔法为第二象限角,f(a)=sin(a一兀/2)cos(3兀/2十a)tan(兀一a)/

问题描述:

已知角阿尔法为第二象限角,f(a)=sin(a一兀/2)cos(3兀/2十a)tan(兀一a)/
an(一a一兀)

已知α是第四象限角,且f(α)=sin(π-α)*cos(2π-α)*tan(-α+3π/2)/cos(-α-π),(1)化简f(a).
(2)若cos(a-3π/2)=1/5,求f(a)的值.(3)若a=1860°,求f(a)的值.
答案:
f(α)=sin(π-α)*cos(2π-α)*tan(-α+3π/2)/cos(-α-π)
=-sin(α)*cos(α)*cot(α)/cos(α)
=-sin(α)**cot(α)
=-cosα
2若cos(a-3π/2)=1/5
即sinα=-1/5
即cosα=2√6/5或cosα=-2√6/5
即f(a)=-cosα=2√6/5或=-2√6/5
3 a=1860°,求f(a)=-cos1860°
=-cos60°=-1/2