设A是n阶矩阵,若存在正整数k,使线性方程组A^kX=0有解向量a,且A^k-1a≠0.证明:a,Aa,…,A^K-1a线性无关
问题描述:
设A是n阶矩阵,若存在正整数k,使线性方程组A^kX=0有解向量a,且A^k-1a≠0.证明:a,Aa,…,A^K-1a线性无关
答
看图片证明