求此概率统计题,为什么方差和期望要等于这么多?求最好能列出公式哈

问题描述:

求此概率统计题,为什么方差和期望要等于这么多?求最好能列出公式哈
设X1,...,Xn是来自(θ1,θ2)上均匀分布的样本,θ1

设随机变量X服从(θ1,θ2)上的均布分布.
概率密度函数为:
f(X)=1/(θ2-θ1) (x属于(θ1,θ2));f(X)=0,(x不属于(θ1,θ2))
则期望E(X)=| xf(x)dx = | x/(θ2-θ1)dx = (θ1+θ2)/2,“|” 表示从θ1积分到θ2
方差D(X) = E(X^2)-[E(X)]^2 = | x^2f(x)dx -[(θ1+θ2)/2]^2 = (θ2-θ1)^2/12