已知(a+3)²+|a+b+5|=0,求3a²b-[2a²b-(2ab-a²b)-4b²]-ab的值

问题描述:

已知(a+3)²+|a+b+5|=0,求3a²b-[2a²b-(2ab-a²b)-4b²]-ab的值

即a+3=0,a+b+5=0
a=-3
b=-2
原式=3a²b-2a²b+2ab-a²b+4b²-ab
=ab+4b²=6+16
=22

(a+3)²+|a+b+5|=0
∴﹛a+3=0
a+b+5=0
∴a=-3, b=-2
3a²b-[2a²b-(2ab-a²b)-4b²]-ab
=3a²b-(2a²b-2ab+a²b-4b²)-ab
=3a²b-2a²b+2ab-a²b+4b²-ab
=ab+4b²
=(-3)×(-2)+4×(-2)²
=22


(a+3)²+/a+b+5/=0
∴a+3=0,a+b+5=0
∴a=-3.b=-2
∴原式
=3a²b-(2a²b-2ab+a²b-4b²)-ab
=3a²b-(3a²b-2ab-4b²)-ab
=2ab+4b²-ab
=ab+4b²
=-3×(-2)+4(-2)²
=6+16
=22